Unraveling the chemical profile, antioxidant, enzyme inhibitory, cytotoxic potential of different extracts from Astragalus caraganae
Erişim
info:eu-repo/semantics/closedAccessTarih
2023Yazar
Kurt-Celep, InciZengin, Gokhan
Uba, Abdullahi I.
Caprioli, Giovanni
Mustafa, Ahmed M.
Angeloni, Simone
Cakilcioglu, Ugur
Guler, Osman
Kaplan, Alevcan
Sharmeen, Jugreet
Mahomoodally, Mohamad F.
Üst veri
Tüm öğe kaydını gösterKünye
Kurt‐Celep, İ., Zengin, G., Uba, A. I., Caprioli, G., Mustafa, A. M., Angeloni, S., ... & Mahomoodally, M. F. (2023). Unraveling the chemical profile, antioxidant, enzyme inhibitory, cytotoxic potential of different extracts from Astragalus caraganae. Archiv der Pharmazie, e2300263.Özet
Six extracts (water, ethanol, ethanol-water, ethyl acetate, dichloromethane, and n-hexane) of Astragalus caraganae were studied for their biological activities and bioactive contents. Based on high-performance liquid chromatography-mass spectrometry (HPLC-MS), the ethanol-water extract yielded the highest total bioactive content (4242.90 & mu;g g(-1)), followed by the ethanol and water extracts (3721.24 and 3661.37 & mu;g g(-1), respectively), while the least total bioactive content was yielded by the hexane extract, followed by the dichloromethane and ethyl acetate extracts (47.44, 274.68, and 688.89 & mu;g g(-1), respectively). Rutin, p-coumaric, chlorogenic, isoquercitrin, and delphindin-3,5-diglucoside were among the major components. Unlike the dichloromethane extracts, all the other extracts showed radical scavenging ability in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay (8.73-52.11 mg Trolox equivalent [TE]/g), while all extracts displayed scavenging property in the 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assay (16.18-282.74 mg TE/g). The extracts showed antiacetylcholinesterase (1.27-2.73 mg galantamine equivalent [GALAE]/g), antibutyrylcholinesterase (0.20-5.57 mg GALAE/g) and antityrosinase (9.37-63.56 mg kojic acid equivalent [KAE]/g) effects. The molecular mechanism of the H2O2-induced oxidative stress pathway was aimed to be elucidated by applying ethanol, ethanol/water and water extracts at 200 & mu;g/mL concentration to human dermal cells (HDFs). A. caraganae in HDF cells had neither a cytotoxic nor genotoxic effect but could have a cytostatic effect in increasing concentrations. The findings have allowed a better insight into the pharmacological potential of the plant, with respect to their chemical entities and bioactive contents, as well as extraction solvents and their polarity.