Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorEroğlu, Kübraen_US
dc.contributor.authorPalabaş, Tuğbaen_US
dc.date.accessioned2019-08-05T12:25:16Z
dc.date.available2019-08-05T12:25:16Z
dc.date.issued2016en_US
dc.identifier.citationEroglu, K., Palabas, T., & Ieee. (2016). The Impact on the Classification Performance of the Combined Use of Different Classification Methods and Different Ensemble Algorithms in Chronic Kidney Disease Detection. New York: Ieee.en_US
dc.identifier.isbn9786050109238
dc.identifier.urihttps://hdl.handle.net/20.500.12294/1623
dc.descriptionEroğlu, Kübra (Arel Author), Palabaş, Tuğba (Arel Author)en_US
dc.description.abstractThe aim of this study is to compare the performance assessment results of the different classification methods and ensemble algorithms for the detection of chronic kidney disease. Six different basic classifier (naive bayes, k nearest neighbor (KNN), support vector machines (SVM), J48, random trees, decision tables) and three different ensemble algorithm (adaboost, bagging, random subspace) are used in the study. Classification results were evaluated using three different performance evaluation criteria ( accuracy, kappa, the area under the ROC curve (AUC)). According to the performance evaluation results, J48 basis algorithm for use with bagging and random subspace ensemble algorithms and random tree basis algorithm for use with bagging ensemble algorithm has provided 100% classification success.en_US
dc.language.isoturen_US
dc.publisherIEEEen_US
dc.relation.ispartof2016 National Conference on Electrical, Electronics And Biomedical Engineering (ELECO)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleThe Impact on the Classification Performance of the Combined Use of Different Classification Methods and Different Ensemble Algorithms in Chronic Kidney Disease Detectionen_US
dc.title.alternativeKronik Böbrek Hastalığı Tespitinde Farklı Sınıflandırma Yöntemleri ve Farklı Topluluk Algoritmalarının Birlikte Kullanımının Sınıflandırma Performansına Etkisien_US
dc.typeconferenceObjecten_US
dc.departmentMühendislik ve Mimarlık Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.identifier.startpage512en_US
dc.identifier.endpage516en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster