Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorDuru, Dilek Gökselen_US
dc.contributor.authorDuru, Adil Denizen_US
dc.date.accessioned2019-10-29T17:48:38Z
dc.date.available2019-10-29T17:48:38Z
dc.date.issued2019
dc.identifier.isbn9781728110134
dc.identifier.urihttps://dx.doi.org/10.1109/EBBT.2019.8741752
dc.identifier.urihttps://hdl.handle.net/20.500.12294/1892
dc.description2019 Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science, EBBT 2019 -- 24 April 2019 through 26 April 2019 --en_US
dc.description.abstractProcessing of brain images has some difficulties because of the large data size and complexity of the data. Deep learning facilitates hierarchicical feature extraction automatically. However the optimization of deep nets and validation of extracted features is critical in neuroimage processing. In multiple sclerosis, detection of the lesion is quite important for diagnosis, treatment, and follow up. Changes in brain morphology and white matter lesions are most significant findings in MS, where this diagnose and follow up is done nowadays by experts in the field subjectively. In this study, 40 MS patients scanned twice with an interval of 6 months, earning 80 MR images, which are grouped into 2 and tagged as having an MS lesion or not, and examined through test images based on three different convolutional neural networks, and classification results and success rate are reported. © 2019 IEEE.en_US
dc.language.isoturen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2019 Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science, EBBT 2019en_US
dc.identifier.doi10.1109/EBBT.2019.8741752en_US
dc.identifier.doi10.1109/EBBT.2019.8741752
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClassificationen_US
dc.subjectCNNen_US
dc.subjectMS Lesionen_US
dc.titleEvrişimsel sinir ağları tabanlı MR-MS imgeleri sınıflandırmasıen_US
dc.title.alternativeMR-MS image classification based on convolutional neural networksen_US
dc.typeconferenceObjecten_US
dc.departmentİstanbul Arel Üniversitesi, Mühendislik-Mimarlık Fakültesi, Biyomedikal Mühendisliği Bölümüen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.department-tempDuru, D.G., Istanbul Arel Üniversitesi, Istanbul, Turkey; Duru, A.D., Marmara Üniversitesi, Istanbul, Turkeyen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster