Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorDönmez, İlknuren_US
dc.contributor.authorAslan, Zaferen_US
dc.date.accessioned2022-01-06T13:33:56Z
dc.date.available2022-01-06T13:33:56Z
dc.date.issued2022en_US
dc.identifier.citationDönmez, İ., & Aslan, Z. (2021, August). Dealing with the Uncertainty Between the Text Content and the Categories by a Proposed Wavelet Similarity Metric. In International Conference on Intelligent and Fuzzy Systems (pp. 233-244). Springer, Cham.en_US
dc.identifier.isbn978-303085625-0
dc.identifier.issn23673370
dc.identifier.urihttps://doi.org/10.1007/978-3-030-85626-7_29
dc.identifier.urihttps://hdl.handle.net/20.500.12294/2934
dc.description.abstractThe rise of the issues related to the uncertainty of decision-making has become a warm issue in operation research. The study is dealing with the uncertainty of text contents and text categories. The complex and ambiguous structure of texts prevents us to have clear and precise categorization. The purpose of this paper is to find the similarity distance for the different categories that the text may be related to, using hidden semantic relations. Our study proposes a new method to reveal the hypernym relations (generic terms, upper classes of the term) of the words in the text and formalize the similarity distance metrics between the given text and different categories. We proposed an original and novel measurement formula to calculate the similarity of defined categories to a specific text using discrete Wavelet transformation. Utilizing the Wavelet transformation method that has been rarely used in text analysis, the upper class “hypernym” relation and their dominance on each other is found. The strength of the results examined on the sample text (I like giraffes and I am afraid of lions. I saw them when they are standing opposite of each other near a cactus in Hoanib Desert.). In the first version that the frequencies are taken into account, sample text is categorized as “warm-blooded animals” between the 8 categories with highest similarity distance. For the normalized binary-valued version, maximum and minimum similarities are calculated in the range from 0.8639 to 0.1360, respectively.en_US
dc.language.isoengen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Networks and Systems / International Conference on Intelligent and Fuzzy Systems, INFUS 2021en_US
dc.identifier.doi10.1007/978-3-030-85626-7_29en_US
dc.identifier.doi10.1007/978-3-030-85626-7_29
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHierarchical Dataen_US
dc.subjectUncertainty in Text Contenten_US
dc.subjectUpper Classes and Wavelet Transformation Relationen_US
dc.titleDealing with the Uncertainty Between the Text Content and the Categories by a Proposed Wavelet Similarity Metricen_US
dc.title.alternativeMetin İçeriği ve Kategoriler Arasındaki Belirsizliğin Önerilen Bir Dalgacık Benzerlik Metriği ile Ele Alınmasıen_US
dc.typeconferenceObjecten_US
dc.departmentMühendislik ve Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.authorid0000-0002-8344-1180en_US
dc.identifier.volume307en_US
dc.identifier.startpage233en_US
dc.identifier.endpage244en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster