Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorMahouti, Peyman
dc.date.accessioned2023-01-02T08:21:48Z
dc.date.available2023-01-02T08:21:48Z
dc.date.issued2020en_US
dc.identifier.citationMahouti, P. (2020). Application of artificial intelligence algorithms on modeling of reflection phase characteristics of a nonuniform reflectarray element. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 33(2), e2689.en_US
dc.identifier.issn0894-3370
dc.identifier.urihttps://doi.org/10.1002/jnm.2689
dc.identifier.urihttps://hdl.handle.net/20.500.12294/3134
dc.description.abstractReflectarray antennas (RAs) have the ability to combine the advantages of both traditional parabolic reflector and phased array antennas without the need for feed network designs. Microstrip reflectarrays (MRAs) have the advantages of being small size, light weighted, easy to prototyped, high gain, low side-lobe level, and a predetermined radiation pattern. These can be achieved by precise calculation of reflection phase at each RA unit independently with a phase compensation proportional to the distance from the feed. The challenging problem is to have a fast and high accurate unit element to be used in multidimension, multiobjective design optimization. Herein, artificial intelligence algorithms (AIAs) have been used for prediction of reflection phase characterization of an X band MRA unit element with respect to the geometrical design parameters. Firstly, a nonuniform unit RA has been designed in 3D electromagnetic (EM) simulation tool for creating the training validation data sets. Then, the data sets are given to the different types of AIA regression models such as multilayer perceptron, symbolic regression, and convolutional neural network. From the results of the validation data set, it can be concluded that the proposed models have sufficient accuracy that can be used in a computationally efficient design optimization process of a large-scale RA design. © 2019 John Wiley & Sons, Ltd.en_US
dc.language.isoengen_US
dc.publisherJohn Wiley and Sons Ltden_US
dc.relation.ispartofInternational Journal of Numerical Modelling: Electronic Networks, Devices and Fieldsen_US
dc.identifier.doi10.1002/jnm.2689en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectDeep Learningen_US
dc.subjectReflectarray Antennaen_US
dc.subjectRegressionen_US
dc.subjectSymbolic Regressionen_US
dc.titleApplication of artificial intelligence algorithms on modeling of reflection phase characteristics of a nonuniform reflectarray elementen_US
dc.typearticleen_US
dc.departmentMühendislik ve Mimarlık Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.authorid0000-0002-3351-4433en_US
dc.identifier.volume33en_US
dc.identifier.issue2en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.institutionauthorMahouti, Peyman
dc.authorwosidO-3071-2017en_US
dc.authorscopusid55516241200en_US
dc.identifier.wosqualityQ3en_US
dc.identifier.wosWOS:000491853800001en_US
dc.identifier.scopus2-s2.0-85075899361en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster