Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorCalik, Nurullah
dc.contributor.authorBelen, Mehmet Ali
dc.contributor.authorMahouti, Peyman
dc.date.accessioned2023-01-17T10:44:27Z
dc.date.available2023-01-17T10:44:27Z
dc.date.issued2019en_US
dc.identifier.citationCalik, N., Belen, M. A., & Mahouti, P. (2020). Deep learning base modified MLP model for precise scattering parameter prediction of capacitive feed antenna. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 33(2), e2682.en_US
dc.identifier.issn0894-3370
dc.identifier.urihttps://doi.org/10.1002/jnm.2682
dc.identifier.urihttps://hdl.handle.net/20.500.12294/3178
dc.description.abstractThe relations between the antennas' geometrical parameters and design specifications usually consist of linear and nonlinear components. Especially with the increase of the requested performance measures, the design procedure becomes much more complex due to the conflicting performance criteria or design limitations. To achieve a design with high performance with feasible design parameters, a fast, accurate, and reliable design optimization process is required. Herein, to have a fast, accurate, and high-performance capacitive-feed antenna model to be used in design optimization problems, a modified multi-layer perceptron (M2LP) model has been proposed. The M2LP is an equivalent convolutional neural network (CNN) model of a standard multilayer perceptron (MLP), where instead of traditional training parameters of MLP, more advanced training parameters of CNN models such as batch-norm layer, leaky-rectified linear unit (ReLU) layer, and Adam training algorithm had been used. Furthermore, the M2LP model had been used in a design optimization process and the obtained optimal antenna had been prototyped using 3D printing technology for justification of the proposed M2LP model with experimental results. As can be seen from the results, the proposed M2LP model is a fast, accurate, and reliable regression model for design optimization of microwave antennas.en_US
dc.language.isoengen_US
dc.publisherWILEYen_US
dc.relation.ispartofINTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDSen_US
dc.identifier.doi10.1002/jnm.2682en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectDeep Learningen_US
dc.subjectModified Multi-Layeren_US
dc.subjectMicrowave Antenna Designen_US
dc.subjectMicrostrip Antennaen_US
dc.subjectRegressionen_US
dc.subjectperceptronen_US
dc.titleDeep learning base modified MLP model for precise scattering parameter prediction of capacitive feed antennaen_US
dc.typearticleen_US
dc.departmentMühendislik ve Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.authorid0000-0002-3351-4433en_US
dc.identifier.volume33en_US
dc.identifier.issue2en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.institutionauthorMahouti, Peyman
dc.authorwosidO-3071-2017en_US
dc.identifier.wosqualityQ3en_US
dc.identifier.wosWOS:000486312400001en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster