Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorDogan, Ahsen Feyza
dc.contributor.authorDuru, Dilek Goksel
dc.date.accessioned2023-02-08T11:57:16Z
dc.date.available2023-02-08T11:57:16Z
dc.date.issued2019en_US
dc.identifier.citationDoğan, A. F., & Duru, D. G. (2019, October). Comparison of machine learning techniques on MS lesion segmentation. In 2019 Medical Technologies Congress (TIPTEKNO) (pp. 1-4). IEEE.en_US
dc.identifier.isbn9781728124209
dc.identifier.urihttps.//doi.org/10.1109/TIPTEKNO.2019.8895202
dc.identifier.urihttps://hdl.handle.net/20.500.12294/3262
dc.description.abstractMultiple sclerosis arises with conformational change in myelin sheath. Magnetic resonance imaging is frequently used in detection of MS. In this study, to figure out MS lesion, machine learning techniques, namely k means and support vector machine are used. K means is an unsupervised technique used to cluster data into k groups. Support vector machine is a supervised machine learning technique used as classifier. Since dataset does not contain label of images, labels are generated by pixel values adopted from original MR image. Classification results were achieved as 70.24% and 91.04% for k means and SVM respectively. According to the promising results, future research will focus on the automatization of this segmentation process via deep learning leading to medical decision support system. © 2019 IEEE.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2019 - Tip Teknolojileri Kongresien_US
dc.identifier.doi10.1109/TIPTEKNO.2019.8895202en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectImage Segmentationen_US
dc.subjectK Meansen_US
dc.subjectMRIen_US
dc.subjectMultiple Sclerosisen_US
dc.subjectSupport Vector Machineen_US
dc.titleComparison of machine learning techniques on MS lesion segmentationen_US
dc.typeconferenceObjecten_US
dc.departmentMühendislik ve Mimarlık Fakültesi, Biyomedikal Mühendisliği Bölümüen_US
dc.authorid0000-0003-1484-8603en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.institutionauthorDuru, Dilek Goksel
dc.authorscopusid23388800200en_US
dc.identifier.scopus2-s2.0-85075613572en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster