Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorDağ, Oben
dc.contributor.authorNefesoğlu, Oğuzhan
dc.date.accessioned2023-06-06T07:41:31Z
dc.date.available2023-06-06T07:41:31Z
dc.date.issued2023en_US
dc.identifier.citationDağ, O., & Nefesoğlu, O. (2023, March). Analysis of Deep Learning Sequence Models for Short Term Load Forecasting. In Computational Intelligence, Data Analytics and Applications: Selected papers from the International Conference on Computing, Intelligence and Data Analytics (ICCIDA) (pp. 104-116). Cham: Springer International Publishing.en_US
dc.identifier.issn2367-3370
dc.identifier.urihttps://doi.org/10.1007/978-3-031-27099-4_9
dc.identifier.urihttps://hdl.handle.net/20.500.12294/3899
dc.description.abstractShort Term Load Forecasting (STLF) is an essential part of generator scheduling in power plants. Better scheduling is crucial for both economic and environmental aspects. In this study, two different deep learning (DL) model architectures based on Long Short Term Memory (LSTM) and Convolutional Neural Networks (CNN) were tested and compared on load datasets from Spain and Turkey. In addition, a novel Long Short Term Memory (LSTM) model with embedding layer was proposed and compared with these two models. Optimum model design choices and practices were discussed for achieving reliable and robust results. It was showed that datasets with different characteristics require different model design choices. The simulations of the proposed DL method were carried out with Python and the performance parameters were also presented. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.language.isoengen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Networks and Systemsen_US
dc.identifier.doi10.1007/978-3-031-27099-4_9en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Learningen_US
dc.subjectLSTMen_US
dc.subjectShort Term Load Forecastingen_US
dc.titleAnalysis of Deep Learning Sequence Models for Short Term Load Forecastingen_US
dc.typeconferenceObjecten_US
dc.departmentMühendislik ve Mimarlık Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.authorid0000-0001-8590-7100en_US
dc.authorid0000-0003-1824-0267en_US
dc.identifier.volume643 LNNSen_US
dc.identifier.startpage104en_US
dc.identifier.endpage116en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.institutionauthorDağ, Oben
dc.institutionauthorNefesoğlu, Oğuzhan
dc.authorscopusid58160859300en_US
dc.authorscopusid58160903500en_US
dc.identifier.scopus2-s2.0-85151060460en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster