Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.advisorTR54226en_US
dc.contributor.advisorTR135360en_US
dc.contributor.authorÇevik, Taneren_US
dc.contributor.authorAli Alshaykha, Ali Mustafaen_US
dc.contributor.authorÇevik, Nazifeen_US
dc.date.accessioned2017-06-13T07:04:17Z
dc.date.available2017-06-13T07:04:17Z
dc.date.issued2016
dc.identifier.citationÇevik, T., Ali Alshaykha, A. M., Çevik, N. (21-23 July 2016). Performance analysis of GLCM-based classification on Wavelet Transform-compressed fingerprint images. Digital Information and Communication Technology and its Applications (DICTAP), 2016 Sixth International Conference. Konya, Turkey : IEEE, 131-135.en_US
dc.identifier.isbn9781467396097
dc.identifier.urihttps://hdl.handle.net/20.500.12294/833
dc.identifier.urihttp://dx.doi.org/10.1109/DICTAP.2016.7544014
dc.descriptionÇevik, Nazife (Arel Author) --- Conference 2016 Sixth International Conference on Digital Information and Communication Technology and its Applications (DICTAP), 21-23 July 2016.en_US
dc.description.abstractFingerprint detection is one of the primary methods for identifying individuals. Gray Level Co-occurrence Matrix (GLCM) is the oldest and prominent statistical textual feature extraction method applied in many fields for texture analysis. GLCM holds the distribution of co-occurring intensity patterns at a given offset over a given image. However, images occupy excessive space in storage by its original sizes. Thus, Discrete Wavelet Transform (DWT) based compression has become popular especially for reducing the size of the fingerprint images. It is important to investigate whether GLCM-based classification can be utilized efficiently on DWT-compressed fingerprint images. In this paper, we analyze the performance of GLCM-based classification on DWT-compressed fingerprint images. We performed satisfying simulations for different levels of DWT-compressed images. Simulation results identify that classification performance sharply decreases by the increase of DWT-compression level. Besides, instead of utilizing all Haralick features, it is recognized that 8 of them are the most prominent ones that affect the accuracy performance of the classification.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.ispartofDigital Information and Communication Technology and its Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClassificationen_US
dc.subjectFingerprint Detectionen_US
dc.subjectGLCMen_US
dc.subjectDWTen_US
dc.titlePerformance analysis of GLCM-based classification on Wavelet Transform-compressed fingerprint imagesen_US
dc.typeconferenceObjecten_US
dc.departmentİstanbul Arel Üniversitesi, Mühendislik ve Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.startpage131en_US
dc.identifier.endpage135en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster